Monte Carlo Method and Pi Day!

Monte Carlo methods (or Monte Carlo experiments) are a broad class of computational algorithms that rely on repeated random sampling to obtain numerical results. They are often used in physical and mathematical problems and are most useful when it is difficult or impossible to use other mathematical methods. Monte Carlo methods are mainly used in three distinct problem classes: optimization, numerical integration, and generation of draws from a probability distribution.
In physics-related problems, Monte Carlo methods are quite useful for simulating systems with many coupled degrees of freedom, such as fluids, disordered materials, strongly coupled solids, and cellular structures (see cellular Potts model). Other examples include modeling phenomena with significant uncertainty in inputs such as the calculation of risk in business and, in math, evaluation of multidimensional definite integrals with complicated boundary conditions. In application to space and oil exploration problems, Monte Carlo based predictions of failure, cost overruns and schedule overruns are routinely better than human intuition or alternative “soft” methods.
The modern version of the Monte Carlo method was invented in the late 1940s by Stanislaw Ulam, while he was working on nuclear weapons projects at the Los Alamos National Laboratory. Immediately after Ulam’s breakthrough, John von Neumann understood its importance and programmed the ENIAC computer to carry out Monte Carlo calculations.

Being secret, the work of von Neumann and Ulam required a code name. A colleague of von Neumann and Ulam, Nicholas Metropolis, suggested using the name Monte Carlo, which refers to the Monte Carlo Casino in Monaco where Ulam’s uncle would borrow money from relatives to gamble. Using lists of “truly random” random numbers was extremely slow, but von Neumann developed a way to calculate pseudorandom numbers, using the middle-square method. Though this method has been criticized as crude, von Neumann was aware of this: he justified it as being faster than any other method at his disposal, and also noted that when it went awry it did so obviously, unlike methods that could be subtly incorrect.